Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.225
Filtrar
1.
Nat Commun ; 15(1): 2890, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570537

RESUMO

DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae , Humanos , Ciclo Celular , Recombinação Homóloga , Divisão Celular , Endonucleases/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA , Reparo do DNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580643

RESUMO

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Camundongos , Animais , Proteínas de Ciclo Celular/metabolismo , DNA , Meiose/genética , Complexo Sinaptonêmico/metabolismo , Recombinação Genética , Recombinação Homóloga
3.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640894

RESUMO

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase Dirigida por DNA , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA Helicases/genética , Reparo do DNA por Junção de Extremidades
4.
Sci Rep ; 14(1): 8797, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627415

RESUMO

Deletions of chromosome 1p (del(1p)) are a recurrent genomic aberration associated with poor outcome in Multiple myeloma (MM.) TRIM33, an E3 ligase and transcriptional co-repressor, is located within a commonly deleted region at 1p13.2. TRIM33 is reported to play a role in the regulation of mitosis and PARP-dependent DNA damage response (DDR), both of which are important for maintenance of genome stability. Here, we demonstrate that MM patients with loss of TRIM33 exhibit increased chromosomal instability and poor outcome. Through knockdown studies, we show that TRIM33 loss induces a DDR defect, leading to accumulation of DNA double strand breaks (DSBs) and slower DNA repair kinetics, along with reduced efficiency of non-homologous end joining (NHEJ). Furthermore, TRIM33 loss results in dysregulated ubiquitination of ALC1, an important regulator of response to PARP inhibition. We show that TRIM33 knockdown sensitizes MM cells to the PARP inhibitor Olaparib, and this is synergistic with the standard of care therapy bortezomib, even in co-culture with bone marrow stromal cells (BMSCs). These findings suggest that TRIM33 loss contributes to the pathogenesis of high-risk MM and that this may be therapeutically exploited through the use of PARP inhibitors.


Assuntos
Mieloma Múltiplo , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo do DNA , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Fatores de Transcrição
5.
PLoS Genet ; 20(3): e1011140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427688

RESUMO

During meiosis, genetic recombination is initiated by the formation of many DNA double-strand breaks (DSBs) catalysed by the evolutionarily conserved topoisomerase-like enzyme, Spo11, in preferred genomic sites known as hotspots. DSB formation activates the Tel1/ATM DNA damage responsive (DDR) kinase, locally inhibiting Spo11 activity in adjacent hotspots via a process known as DSB interference. Intriguingly, in S. cerevisiae, over short genomic distances (<15 kb), Spo11 activity displays characteristics of concerted activity or clustering, wherein the frequency of DSB formation in adjacent hotspots is greater than expected by chance. We have proposed that clustering is caused by a limited number of sub-chromosomal domains becoming primed for DSB formation. Here, we provide evidence that DSB clustering is abolished when meiotic prophase timing is extended via deletion of the NDT80 transcription factor. We propose that extension of meiotic prophase enables most cells, and therefore most chromosomal domains within them, to reach an equilibrium state of similar Spo11-DSB potential, reducing the impact that priming has on estimates of coincident DSB formation. Consistent with this view, when Tel1 is absent but Ndt80 is present and thus cells are able to rapidly exit meiotic prophase, genome-wide maps of Spo11-DSB formation are skewed towards pericentromeric regions and regions that load pro-DSB factors early-revealing regions of preferential priming-but this effect is abolished when NDT80 is deleted. Our work highlights how the stochastic nature of Spo11-DSB formation in individual cells within the limited temporal window of meiotic prophase can cause localised DSB clustering-a phenomenon that is exacerbated in tel1Δ cells due to the dual roles that Tel1 has in DSB interference and meiotic prophase checkpoint control.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Saccharomyces cerevisiae , DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Meiose/genética , Prófase/genética , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542258

RESUMO

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Reparo do DNA , Reparo do DNA por Junção de Extremidades , Análise de Sequência de RNA , Perfilação da Expressão Gênica
7.
Front Immunol ; 15: 1357101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449871

RESUMO

Radiation therapy (RT) not only can directly kill tumor cells by causing DNA double-strand break, but also exerts anti-tumor effects through modulating local and systemic immune responses. The immunomodulatory effects of RT are generally considered as a double-edged sword. On the one hand, RT effectively enhances the immunogenicity of tumor cells, triggers type I interferon response, induces immunogenic cell death to activate immune cell function, increases the release of proinflammatory factors, and reshapes the tumor immune microenvironment, thereby positively promoting anti-tumor immune responses. On the other hand, RT stimulates tumor cells to express immunosuppressive cytokines, upregulates the function of inhibitory immune cells, leads to lymphocytopenia and depletion of immune effector cells, and thus negatively suppresses immune responses. Nonetheless, it is notable that RT has promising abscopal effects and may achieve potent synergistic effects, especially when combined with immunotherapy in the daily clinical practice. This systematic review will provide a comprehensive profile of the latest research progress with respect to the immunomodulatory effects of RT, as well as the abscopal effect of radioimmunotherapy combinations, from the perspective of biological basis and clinical practice.


Assuntos
Imunoterapia , Radioimunoterapia , Citocinas , Quebras de DNA de Cadeia Dupla , Morte Celular Imunogênica
8.
Nature ; 628(8006): 212-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509361

RESUMO

RAD51 is the central eukaryotic recombinase required for meiotic recombination and mitotic repair of double-strand DNA breaks (DSBs)1,2. However, the mechanism by which RAD51 functions at DSB sites in chromatin has remained elusive. Here we report the cryo-electron microscopy structures of human RAD51-nucleosome complexes, in which RAD51 forms ring and filament conformations. In the ring forms, the N-terminal lobe domains (NLDs) of RAD51 protomers are aligned on the outside of the RAD51 ring, and directly bind to the nucleosomal DNA. The nucleosomal linker DNA that contains the DSB site is recognized by the L1 and L2 loops-active centres that face the central hole of the RAD51 ring. In the filament form, the nucleosomal DNA is peeled by the RAD51 filament extension, and the NLDs of RAD51 protomers proximal to the nucleosome bind to the remaining nucleosomal DNA and histones. Mutations that affect nucleosome-binding residues of the RAD51 NLD decrease nucleosome binding, but barely affect DNA binding in vitro. Consistently, yeast Rad51 mutants with the corresponding mutations are substantially defective in DNA repair in vivo. These results reveal an unexpected function of the RAD51 NLD, and explain the mechanism by which RAD51 associates with nucleosomes, recognizes DSBs and forms the active filament in chromatin.


Assuntos
Microscopia Crioeletrônica , Quebras de DNA de Cadeia Dupla , Nucleossomos , Rad51 Recombinase , Proteínas de Saccharomyces cerevisiae , Humanos , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Reparo do DNA/genética , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Mutação , Domínios Proteicos , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Ligação Proteica
9.
J Biomed Sci ; 31(1): 32, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532479

RESUMO

BACKGROUND: The field of genome editing has been revolutionized by the development of an easily programmable editing tool, the CRISPR-Cas9. Despite its promise, off-target activity of Cas9 posed a great disadvantage for genome editing purposes by causing DNA double strand breaks at off-target locations and causing unwanted editing outcomes. Furthermore, for gene integration applications, which introduce transgene sequences, integration of transgenes to off-target sites could be harmful, hard to detect, and reduce faithful genome editing efficiency. METHOD: Here we report the development of a multicolour fluorescence assay for studying CRISPR-Cas9-directed gene integration at an endogenous locus in human cell lines. We examine genetic integration of reporter genes in transiently transfected cells as well as puromycin-selected stable cell lines to determine the fidelity of multiple CRISPR-Cas9 strategies. RESULT: We found that there is a high occurrence of unwanted DNA integration which tarnished faithful knock-in efficiency. Integration outcomes are influenced by the type of DNA DSBs, donor design, the use of enhanced specificity Cas9 variants, with S-phase regulated Cas9 activity. Moreover, restricting Cas9 expression with a self-cleaving system greatly improves knock-in outcomes by substantially reducing the percentage of cells with unwanted DNA integration. CONCLUSION: Our results highlight the need for a more stringent assessment of CRISPR-Cas9-mediated knock-in outcomes, and the importance of careful strategy design to maximise efficient and faithful transgene integration.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Quebras de DNA de Cadeia Dupla , Transgenes , DNA
10.
Nat Commun ; 15(1): 2629, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521791

RESUMO

DNA double-strand breaks (DSBs) are repaired by a hierarchically regulated network of pathways. Factors influencing the choice of particular repair pathways, however remain poorly characterized. Here we develop an Integrated Classification Pipeline (ICP) to decompose and categorize CRISPR/Cas9 generated mutations on genomic target sites in complex multicellular insects. The ICP outputs graphic rank ordered classifications of mutant alleles to visualize discriminating DSB repair fingerprints generated from different target sites and alternative inheritance patterns of CRISPR components. We uncover highly reproducible lineage-specific mutation fingerprints in individual organisms and a developmental progression wherein Microhomology-Mediated End-Joining (MMEJ) or Insertion events predominate during early rapid mitotic cell cycles, switching to distinct subsets of Non-Homologous End-Joining (NHEJ) alleles, and then to Homology-Directed Repair (HDR)-based gene conversion. These repair signatures enable marker-free tracking of specific mutations in dynamic populations, including NHEJ and HDR events within the same samples, for in-depth analysis of diverse gene editing events.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Alelos , Reparo do DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Mutação , Reparo de DNA por Recombinação , Sistemas CRISPR-Cas/genética
11.
Sci Rep ; 14(1): 5225, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433244

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, invades many cell types affecting numerous host-signalling pathways. During the T. cruzi infection, we demonstrated modulations in the host RNA polymerase II activity with the downregulation of ribonucleoproteins affecting host transcription and splicing machinery. These alterations could be a result of the initial damage to the host DNA caused by the presence of the parasite, however, the mechanisms are not well understood. Herein, we examined whether infection by T. cruzi coincided with enhanced DNA damage in the host cell. We studied the engagement of the DNA damage response (DDR) pathways at the different time points (0-24 h post-infection, hpi) by T. cruzi in LLC-MK2 cells. In response to double-strand breaks (DSB), maximum phosphorylation of the histone variant H2AX is observed at 2hpi and promotes recruitment of the DDR p53-binding protein (53BP1). During T. cruzi infection, Ataxia-telangiectasia mutated protein (ATM) and DNA-PK protein kinases remained active in a time-dependent manner and played roles in regulating the host response to DSB. The host DNA lesions caused by the infection are likely orchestrated by the non-homologous end joining (NHEJ) pathway to maintain the host genome integrity.


Assuntos
Doença de Chagas , Quebras de DNA de Cadeia Dupla , Humanos , Células Epiteliais , Doença de Chagas/genética , Fosforilação , Reparo do DNA
12.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38512324

RESUMO

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Masculino , Camundongos , Animais , Proteínas de Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Mutação com Perda de Função , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Mutação , Meiose/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Reparo do DNA/genética , Mamíferos/metabolismo
13.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545958

RESUMO

The zebrafish (Danio rerio) is an important model organism for basic as well as applied bio-medical research. One main advantage is its genetic tractability, which was greatly enhanced by the introduction of the CRISPR/Cas method a decade ago. The generation of loss-of-function alleles via the production of small insertions or deletions in the coding sequences of genes with CRISPR/Cas systems is now routinely achieved with high efficiency. The method is based on the error prone repair of precisely targeted DNA double strand breaks by non-homologous end joining (NHEJ) in the cell nucleus. However, editing the genome with base pair precision, by homology-directed repair (HDR), is by far less efficient and therefore often requires large-scale screening of potential carriers by labour intensive genotyping. Here we confirm that the Cas9 protein variant SpRY, with relaxed PAM requirement, can be used to target some sites in the zebrafish genome. In addition, we demonstrate that the incorporation of an artificial nuclear localisation signal (aNLS) into the Cas9 protein variants not only enhances the efficiency of gene knockout but also the frequency of HDR, thereby facilitating the efficient modification of single base pairs in the genome. Our protocols provide a guide for a cost-effective generation of versatile and potent Cas9 protein variants and efficient gene editing in zebrafish.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Animais , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Quebras de DNA de Cadeia Dupla
14.
Nature ; 628(8006): 145-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538785

RESUMO

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
15.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460408

RESUMO

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Assuntos
Toxinas Marinhas , Microcistinas , Sirtuínas , Espermatogônias , Animais , Masculino , Camundongos , Apoptose , Proliferação de Células , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Camundongos Endogâmicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidade , Sêmen , Sirtuínas/efeitos dos fármacos , Sirtuínas/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo
16.
Cancer Lett ; 588: 216812, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490327

RESUMO

The efficacy of temozolomide (TMZ) treatment in glioblastoma (GBM) is influenced by various mechanisms, mainly including the level of O6-methylguanine-DNA methyltransferase (MGMT) and the activity of DNA damage repair (DDR) pathways. In our previous study, we had proved that long non-coding RNA HOTAIR regulated the GBM progression and mediated DDR by interacting with EZH2, the catalytic subunit of PRC2. In this study, we developed a small-molecule inhibitor called EPIC-0628 that selectively disrupted the HOTAIR-EZH2 interaction and promoted ATF3 expression. The upregulation of ATF3 inhibited the recruitment of p300, p-p65, p-Stat3 and SP1 to the MGMT promoter. Hence, EPIC-0628 silenced MGMT expression. Besides, EPIC-0628 induced cell cycle arrest by increasing the expression of CDKN1A and impaired DNA double-strand break repair via suppressing the ATF3-p38-E2F1 pathway. Lastly, EPIC-0628 enhanced TMZ efficacy in GBM in vitro and vivo. Hence, this study provided evidence for the combination of epigenetic drugs EPIC-0628 with TMZ for GBM treatment through the above mechanisms.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Quebras de DNA de Cadeia Dupla , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fator 3 Ativador da Transcrição/genética
17.
Radiat Res ; 201(4): 275-286, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453644

RESUMO

We present an extension of the Local Effect Model (LEM) to include time-dose relationships for predicting effects of protracted and split-dose ion irradiation at arbitrary LET. With this kinetic extension, the spatial and temporal induction and processing of DNA double strand breaks (DSB) in cellular nuclei can be simulated for a wide range of ion radiation qualities, doses and dose rates. The key concept of the extension is based on the joint spatial and temporal coexistence of initial DSB, leading to the formation of clustered DNA damage on the µm scale (as defined e.g., by the size scale of Mbp chromatin loops), which is considered to have an increased cellular lethality as compared to isolated, single DSB. By simulating the time dependent induction and repair of DSB and scoring of isolated and clustered DSB upon irradiation, the impact of dose rate and split dose on the cell survival probability can be computed. In a first part of this work, we systematically analyze the predicted impact of protraction in dependence of factors like dose, LET, ion species and radiosensitivity as characterized by the photon LQ-parameters. We establish links to common concepts that describe dose rate effects for low LET radiation. We also compare the model predictions to experimental data and find agreement with the general trends observed in the experiments. The relevant concepts of our approach are compared to other models suitable for predicting time effects. We investigate an apparent analogy between spatial and temporal concentration of radiation delivery, both leading to increased effectiveness, and discuss similarities and differences between the general dependencies of these clustering effects on their impacting factors. Finally, we conclude that the findings give additional support for the general concept of the LEM, i.e. the characterization of high LET radiation effects based on the distinction of just two classes of DSB (isolated DSB and clustered DSB).


Assuntos
Quebras de DNA de Cadeia Dupla , Radiação Ionizante , Dano ao DNA , Núcleo Celular , Sobrevivência Celular/efeitos da radiação , Reparo do DNA
18.
Science ; 383(6684): 702-703, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359118

RESUMO

Suppressing telomerase action at broken DNA preserves genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Telomerase , Telômero , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Humanos
19.
Science ; 383(6684): 763-770, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359122

RESUMO

Telomerase, the enzyme that maintains telomeres at natural chromosome ends, should be repressed at double-strand breaks (DSBs), where neotelomere formation can cause terminal truncations. We developed an assay to detect neotelomere formation at Cas9- or I-SceI-induced DSBs in human cells. Telomerase added telomeric repeats to DSBs, leading to interstitial telomeric repeat insertions or the formation of functional neotelomeres accompanied by terminal deletions. The threat that telomerase poses to genome integrity was minimized by ataxia telangiectasia and Rad3-related (ATR) kinase signaling, which inhibited telomerase at resected DSBs. In addition to acting at resected DSBs, telomerase used the extruded strand in the Cas9 enzyme-product complex as a primer for neotelomere formation. We propose that although neotelomere formation is detrimental in normal human cells, it may allow cancer cells to escape from breakage-fusion-bridge cycles.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Telomerase , Telômero , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Telomerase/genética , Telômero/genética , Telômero/metabolismo , Técnicas Genéticas , Proteína 9 Associada à CRISPR , Células HeLa
20.
Methods Mol Biol ; 2770: 227-261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351457

RESUMO

Molecular approaches are required to detect DNA double-strand break (DSB) events and to map and quantify them at high resolution. One of the most popular molecular methods in the field of meiotic recombination is the ChIP-SSDS (Chromatin immuno-precipitation and single-strand DNA sequencing). Here, we present two fully-automated Nextflow-based pipelines to analyze the sequencing data generated by this method. The first one identifies highly reproducible DSB sites, while the second provides a characterization of recovered DSB sites, including the description of the hotspot distribution and intensity along the genome and the overlap with specific regions such as gene features or known DSB hotspots. Finally, we discuss limitations/advantages and key points to consider when applying this method to specific genotypes or unconventional species.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , DNA de Cadeia Simples/genética , Genoma , Análise de Sequência de DNA , Meiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...